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Abstract. We give a short proof of Urabe’s criteria for the isochronicity of periodical solutions
of the equation̈x + g(x) = 0. We show that apart from the harmonic oscillator there exists a large
family of isochronous potentials which must all be non-polynomial and not symmetric (an even
function of the coordinatex).

We consider a system of differential equations of the form

ẋ = y
ẏ = −g(x) (1)

where we suppose

g(x) ∈ C(a, b), xg(x) > 0 for x 6= 0, g(0) = 0 and g′(0) = k 6= 0. (2)

Denoting

U(x) =
∫ x

0
g(s) ds

we obtain the first integral in the form ‘kinetic energy + potential energy’, i.e. in the form

H(x, y)
def= y2

2
+U(x) = E (3)

such thatH(x, y) is the Hamiltonian and (1) are the Hamilton equations of the motion of our
system [3].

It is well known that any solution near the origin oscillates aroundx = 0, y = 0 with a
bounded period, i.e. system (1) has a centre in the origin. The problem then arises to determine
whether the period of oscillations is constant for all solutions near the origin. A centre with
such property is calledisochronous. At present the problem of isochronicity is of renewed
interest (see, for example, [2] for current references).

It was shown in [1] that ifg(x) is a polynomial, then system (1) cannot have an isochronous
centre, except wheng(x) is linearg(x) = kx, in which casek = (2π/τ)2, whereτ is the period
of oscillations. Ifg(x) is not exactly linear, then still the period of oscillations infinitesimally
close to the origin is also equal toτ .

In this paper we give a simple short proof of the following Urabe’s criteria [7] of
isochronicity of the centre of system (1).
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Theorem 1. Wheng(x) is continuous, the necessary and sufficient condition thatg(x) ∈
C1(a, b) and system (1) has an isochronous centre in the origin, is that, in the neighbourhood
of x = y = 0 by the transformation

1
2X

2 = U(x) (4)

whereX/x > 0 for x 6= 0, g(x) is expressed as

g(x) = g[x(X)]
def= h(X) = 2π

τ

X

1 +S(X)
(5)

whereS(X) is an arbitrary continuous odd function andτ is the period of the oscillations.

In [7] Urabe first proved the criteria in the case wheng(x) is an analytic function. For
functiong(x) ∈ C1 he got a more complicated criterion with the functionh(X) of the form

h(X) = 2π

τ

X

1 +S(X) +R(X)

whereS(X) is an odd andR(X) is an even continuous function (see [7]). Then in [8] he
showed that ifg(x) ∈ C1(a, b) then necessarilyR(X) ≡ 0.

Note that in the statement of the theorem Urabe demands the additional property

S(0) = 0 XS(X) ∈ C1

but every continuous odd function has the propertyS(0) = 0, and the second one is not
essential for our proof. We have also requiredg(x) to be smooth in a neighbourhood ofx = 0
(as in the original work by Urabe [7], but in fact it is sufficient for our reasoning ifg(x) is
continuous in a neighbourhood of the origin and differentiable atx = 0).

Our proof of theorem 1 is based on the following criteria, which for the first time appears,
apparently, in Landau and Pyatigorsky [4] and which later was rederived by Keller [5, 6] (who
also considered some connected problems, in particular, the case of non-monotonic potential).
For the convenience of the reader we present the criteria with the proof, which stems from the
books [3, 4].

Theorem 2. Wheng(x) is continuous and the conditions (2) hold, the system (1) has an
isochronous centre of the periodτ at the origin if and only if

x2(U)− x1(U) =
√

2τ

π

√
U (6)

for U ∈ (0, U0), wherex1(U) is the inverse function toU(x) for x ∈ (a, 0) andx2(U) is the
inverse function toU(x) for x ∈ (0, b).

Proof. First we note that due to (2) the functionsx1(U), x2(U) are defined andx1(U), x2(U) ∈
C1(0, U0) with aU0 > 0. Denote byT (E) the period of the orbit of (1) corresponding to the
value of energyE. Then we have [3]

T (E) =
√

2
∫ E

0

[
dx2 (U)

dU
− dx1 (U)

dU

]
dU√
E − U . (7)

Dividing both sides of this equation by
√
α − E, whereα is a parameter, integrating with

respect toE from 0 toα and puttingU in place ofα (see [3] for details) one gets

x2(U)− x1(U) = 1√
2π

∫ U

0

T (E) dE√
U − E .

In the case whenT (E) ≡ τ that yields (6).



On Urabe’s criteria of isochronicity 1281

To prove that (6) is the sufficient condition of isochronicity we note that (6) implies

x ′2(U)− x ′1(U) =
√

2τ

2π
√
U
.

Substituting this expression into (7) and integrating we getT (E) ≡ τ . �
As an immediate consequence we get the following proposition proved earlier in [7].

Corollary 1. If g(x) ∈ C1(a, b) is an odd function, then the origin is an isochronous centre if
g(x) = (2π/τ)2x.

In other words, if the potential (energy)U(x) is an even function of positionx then the
only isochronous system is the harmonic oscillator given above.

Proof of theorem 1. Let us suppose that the system (1) has an isochronous centre. Then due
to theorem 2 the relation (6) holds and we get

x2(U)−
√

2τ

2π

√
U = x1 +

√
2τ

2π

√
U

def= f (U).

Therefore

x ′2(U) =
τ

2
√

2π
√
U

+ f ′(U) (8)

x ′1(U) =
−τ

2
√

2π
√
U

+ f ′(U). (9)

Taking the derivative in the both parts of (6) with respect tox we get forx < 0

x ′2(U)U
′ − 1=

√
2τ

2π
√
U
U ′.

Therefore, using (8) we obtain

U ′ = 2π

τ

−√2U

1− 2π
τ

√
2Uf ′(U)

. (10)

Similarly, for x > 0 we get from (9)

U ′ = 2π

τ

√
2U

1 + 2π
τ

√
2Uf ′(U)

. (11)

Therefore the functiong(x) can be expressed in the form (5). Now it remains to show that

S(X) = 2π

τ
Xf ′(X2)

is a continuous function. Obviously, it is true ifX 6= 0.
ForX = x = 0 we have the situation as follows. First note that (2) and (6) yield

U = 2π2

τ 2
x2 + o(x2).

Then forx,X > 0 from (11) we get

S(X) = 2π

τ

√
2Uf ′(U) =

2π2

τ

√
2U

U ′
− 1= x

√
1 + o(1)

x + o(x)
− 1.

Therefore,

lim
X→0+

S(X) = 0.
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Forx,X < 0 (10) yields

S(X) = −2π

τ

√
2Uf ′(U) = −

2π2

τ

√
2U

U ′
− 1= −|x|

√
1 + o(1)

x + o(x)
− 1.

It means limX→0− S(X) = 0 and, hence,S(X) is continuous at zero.
Let us prove that (5) is also the sufficient condition of isochronicity. Forx > 0 we can

write (5) in the form

dU

dx
= 2π

τ

X

1 +S(X)
= 2π

τ

√
2U

1 +S(
√

2U)
.

Integrating this equation we get

x2(U) = τ

2π

(√
2U +

∫ √2U

0
S(z)dz

)
.

Similarly, for x < 0 we obtain

x1(U) = τ

2π

(
−
√

2U +
∫ √2U

0
S(z)dz

)
.

Due to the condition of the theoremS(z) is a continuous function, and, hence, the integral is
convergent. Therefore (6) holds, i.e. the system has an isochronous centre in the origin.�

In conclusion, we have proven that the Hamiltonian (3) has the isochronous centre if the
condition (6) is satisfied. In case of a symmetric potentialU(x) (an even function ofx) the
only solution is the harmonic oscillator. IfU(x) is not symmetric (even), other solutions might
be possible. However, for any polynomialU(x) (andg(x) = U ′(x)), the harmonic potential
is still the only solution [1]. Thus, other non-trivial isochronic potentials can be invented
by taking an analytic but not polynomial or even functionU(x), in agreement with Urabe’s
criteria (5) of theorem 1, which we have shown to be equivalent to (6). These criteria still allow
for quite a large family of isochronous potentialsU(x) and we can construct such potentials
analytically. Indeed, differentiating both sides of the equality (4) and taking into account (5)
we get in the case of an isochronous centre

X
dX

dx
= g(x) = 2π

τ

X

1 +S(X)
.

Hence, we obtain the next formula, which for the first time appears in [7]

x = τ

2π

∫ X

0
(1 +S(u)) du. (12)

This formula together with (5) is a tool to construct isochronous potentials. TakingS(X) = X
Urabe got

g(x) = 2π

τ

[
1−

(
1 +

4π

τ
x

)− 1
2

]
hence, the corresponding isochronous potential is

U(x) = 1 +
2π

τ
x −

√
1 +

4π

τ
x (13)

where− τ
4π < x < 3τ

4π , i.e. the potential is an analytic function defined on a finite segment of
real axis. Here, in the calculation, we have chosen the (negative) sign such thatg(x = 0) = 0
is obeyed.
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Let now

S(X) = 2

π
arctgX.

Then (12) yields

x = τ

2π
X +

τ

π2
X arctgX − τ

2π2
log(X2 + 1).

Obviously,x(X) is strictly increasing onR andx(0) = 0, x(R) = R. Therefore,

g(x) = 2π

τ

X(x)

1 + 2
π

arctg(X(x))

is defined for allx ∈ R, positive forx > 0 and negative forx < 0. Hence, the corresponding
potentialU(x) is an analytic function defined on the whole real axis with the only minimum in
the origin. One can construct this potential at least in the form of power series. However, the
potential is not an entire function. As we have mentioned above it was shown in [1] (in fact, it
is an immediate consequence of formula (6)), that the only polynomial isochronous potential is
the quadratic one. We also see that there are analytic potentials defined on the whole real axis.
Thus the question naturally arises whether there are isochronous potentials defined by entire
functions? Another still open and interesting question is the investigation of the isochronicity
property of non-monotonic potentials.
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